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Abstract: We prove that the open topological string partition function on a D-brane

configuration in a Calabi-Yau manifold X takes the form of a closed topological string

partition function on a different Calabi-Yau manifold Xb. This identification shows that

the physics of D-branes in an arbitrary background X of topological string theory can

be described either by open+closed string theory in X or by closed string theory in Xb.

The physical interpretation of the “bubbling” Calabi-Yau Xb is as the space obtained by

letting the D-branes in X undergo a geometric transition. This implies, in particular, that

the partition function of closed topological string theory on certain bubbling Calabi-Yau

manifolds are invariants of knots in the three-sphere.
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1. Introduction and conclusion

D-branes in a given vacuum of string theory have two alternative descriptions; either

in terms of open strings or in terms of closed strings. This basic observation motivates

the existence of a duality between open+closed string theory in the given vacuum and

closed string theory in the vacuum where the D-branes have been replaced by a non-trivial

geometry with fluxes.1

In this paper we give a very concrete realization of open/closed duality. We find an

explicit relation between the partition function of open+closed topological string theory

in a given Calabi-Yau X and the partition function of closed topological string theory in

another “bubbling” Calabi-Yau Xb:

Zo+c(X) = Zc(Xb). (1.1)

1This type of duality is often studied in a low energy, decoupling limit where the open+closed string

theory on one side of the duality reduces to a gauge theory. Taking the same limit on the purely closed string

side of the duality in effect replaces the asymptotic geometry of the original vacuum by a new asymptotic

geometry. The AdS/CFT correspondence is the prototypical example of such a “low energy” open/closed

duality.
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The physical interpretation of Xb is as the background obtained by replacing the D-branes

in X by “fluxes” when the D-branes undergo a geometric transition. This equality shows

that the physics of D-branes in an arbitrary background X of topological string theory can

be described either by open+closed string theory in X or by closed string theory in Xb.

The identification of the open+closed partition function in X with the closed string

partition function in Xb does not rely on knowing explicitly the exact answer for the

partition functions, which is why the result applies in great generality. The result relies on

being able to write the open string partition function in terms of the open Gopakumar-

Vafa (GV) invariants [1, 2] and the closed string partition function in terms of the closed

Gopakumar-Vafa (GV) invariants [3]. As reviewed in section 2, such a parametrization

of the open string partition function is possible whenever the world-volume geometry of

the D-branes defining the open string theory has a non-trivial first Betti number b1(L),

where L is the cycle that the D-branes wrap. It is for such open string theories that

we can explicitly show that they are completely equivalent to a closed string theory on a

“bubbling” Calabi-Yau space Xb.

In order to completely determine the open string partition function in a Calabi-Yau X

we must supply the open GV invariants in X and the holonomy of the gauge field on the

branes. Since the holonomy of the gauge field encodes2 the “position” of the branes, the

open string amplitude depends on the holonomy. Following [4], we encode the data about

the holonomy matrix in a Young tableau,3 labeled by R. Given this data we prove that the

open+closed string partition function on X can be rewritten precisely as a closed string

partition function on another Calabi-Yau Xb. Namely, the open string partition function

in X can be written as a closed string instanton expansion on Xb, which is what the closed

string partition function in topological string theory computes.

We find an explicit formula relating the closed GV invariants in Xb to the open+closed

GV invariants in X and the holonomy of the gauge field living on the D-branes. As we

recall in section 2 the GV invariants are a collection of integers in terms of which the

topological string theory partition function on a Calabi-Yau manifold can be written down

to all orders in perturbation theory. The formula we find takes the integer open and closed

GV invariants in X together with the holonomy of the gauge field labeled by the Young

tableau R and relates them to a new set of integers, which are precisely the closed GV

invariants in another space Xb!

By using the relation we obtain between the closed GV invariants in Xb and the

open+closed GV invariants in X combined with the holonomy of the gauge field, we can

explicitly identify the closed string partition function in Xb with the open+closed string

partition function in X. This computation demonstrates that the physics of D-branes in X

is completely equivalent to closed string physics in Xb. This gives a way to explicitly con-

struct open/closed dualities even when the explicit expressions for the partition functions

are not known. It allows us to relate open string theory in X with closed string theory in

Xb.

2The position is defined only up to Hamiltonian deformations, which are gauge symmetries of the A-

model open string field theory.
3See section 3 for details.
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l2 l2m−1 l2m

Figure 1: The Young tableau R, shown rotated, is specified by the lengths lI of all the edges.

Equivalently, lI denote the length of the black and white regions in the Maya diagram.

The topology of Xb depends on the topology of X and on the shape of the Young

tableau R. If we parametrize the Young tableau by using the following coordinates4

then we find that b2(Xb) = b2(X) + 2m, where b2 is the second Betti number of the

manifold. The size of the extra 2m two-cycles created by replacing the branes by “flux”

is given by tI = gslI , with I = 1, . . . , 2m, where lI are the coordinates of the Young

tableau in figure 1. The appearance of the extra cycles has a simple physical intepretation.

The branes in X can undergo a geometric transition and be replaced by fluxes. Fluxes

in topological string theory correspond precisely to non-trivial periods of the complexified

Kähler form. In this picture, the original branes disappear and leave behind a collection

of non-contractible cycles on which their flux is supported. Therefore, the Calabi-Yau Xb

captures the backreacted geometry produced by the D-branes in X. It is this picture that

warrants the description of Xb as a bubbling Calabi-Yau.

An interesting application of these results is to knot invariants in S3. On the one

hand, knot invariants in S3 are captured by the expectation value of Wilson loops in

Chern-Simons theory in S3 [5]. On the other hand, as shown in [4], a Wilson loop operator

in U(N) Chern-Simons theory on S3 — which is labeled by a representation R and a knot

α — is described by a configuration of D-branes or anti-branes in the resolved conifold

geometry (see [4] for the details of the brane and anti-brane configuration).

Since we can now relate the open+closed GV invariants of a brane configuration in the

resolved conifold to the closed GV invariants in Xb, we arrive at the representation of knot

invariants in terms of closed GV invariants in Xb. This relation was already established

in [4] for the case of the unknot and for arbitrary representation R, where it was shown

that these knot invariants are captured by the closed topological string partition function

on certain bubbling Calabi-Yau manifolds. Therefore, as a corollary of the results in this

paper and those in [4] we find a novel representation of knot invariants for arbitrary knots

in S3 in terms of closed GV invariants of bubbling Calabi-Yau manifolds Xb!

An interesting recent development in the application of topological strings to knot

theory is the so-called categorification program [6, 7]. The idea is to use the BPS Hilbert

4Informally, lodd is the number of rows in the tableau with the same number of boxes while leven is the

number of columns in the tableau with the same number of boxes.
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space associated with open strings on the branes realizing knots to define more refined

invariants than knot polynomials. Our proposal in [4] and in this paper is that these

branes can undergo a geometric transition to bubbling Calabi-Yau manifolds. We are then

tempted to contemplate that the BPS Hilbert space associated with closed strings on the

bubbling Calabi-Yau manifolds could be used define new knot invariants.

The results in this paper confirm the expectation that whenever we have many branes in

a given open+closed string theory, we have a dual description in terms of pure closed string

theory in the backreacted geometry, where branes are replaced by non-trivial geometry with

fluxes. It would be very interesting to extend the ideas in this paper to physical string

theory. Learning how to rewrite open string theory in a given background as a closed string

theory in a different background would be tantamount to deriving open/closed dualities in

the physical theory.

This paper focuses on geometric transitions, namely on transitions of D-branes into

pure geometry with flux. Another interesting phenomenon found in the study of Wilson

loops in N = 4 Yang-Mills and Chern-Simons theory is that fundamental strings describing

Wilson loops can puff up into D-branes. Just like for geometric transitions one may expect

that the transition between strings and D-branes occurs more generally. The forthcoming

paper [8] will discuss a large class of such transitions in the topological string setting.

The plan for the rest of the paper is as follows. In section 2 we give a brief summary

of the physical origin of open and closed GV invariants and how they characterize the

topological string partition function for open and closed strings. In section 3 we show

that the partition function of open+closed string theory in a Calabi-Yau X is equal to the

closed string partition function in a bubbling Calabi-Yau Xb. We argue that Xb is the

space obtained by letting the D-branes in X undergo a geometric transition. In section 4

we study the geometric transitions proposed in this paper in the context of toric Calabi-

Yau manifolds and show that the transitions we propose can be explicitly exhibited. The

appendices contain the derivation of various formulas appearing in the main text.

2. GV invariants in a nutshell

The topological string partition function in X computes certain F-terms [9, 10, 1] in the

effective action obtained by compactifying ten dimensional string theory on X. The physi-

cal origin of GV invariants stems from the observation in [1 – 3] that these higher derivative

terms in Type IIA string theory do not depend on the string coupling constant, and can

also be computed using an index that counts the BPS spectrum of wrapped membranes in

an M-theory compactification on X.

The upshot is that the topological string amplitudes exhibit hitherto unknown inte-

grality properties. Remarkably, the partition function can be computed to all orders in

perturbation theory in terms of the integral invariants [1 – 3] associated to a given Calabi-

Yau.

Closed GV invariants. The closed string partition function Zc on X computes the

supersymmetric completion of the following higher derivative term in the four dimensional

– 4 –
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effective action5

F (gs, t)R
2
+, (2.1)

where:

F (gs, t) =

∞∑

g=0

Fg(t)g
2g−2
s and Zc(gs, t) = exp(F (gs, t)). (2.2)

Fg(gs, t) is the genus g topological string free energy and gs is the topological string coupling

constant. The complex scalar fields ~t ≡ (t1, . . . , tb2(X)) in the physical theory parametrize

the “size” of the various two cycles in X

ta =

∫

Σa

J , (2.3)

where Σa are an integral basis of H2(X,Z) and J is the complexified Kähler form.

It has been argued by Gopakumar and Vafa [11, 12] that F (gs, t) can be computed in

terms of integer invariants n
~Q
g ∈ Z, where g ∈ Z≥0 and ~Q ≡ (Q1, Q2, . . . , Qb2(X)) ∈ Zb2(X).

These integers n
~Q
g are called invariant because they do not change under smooth complex

structure deformations of X; they define an index. Roughly speaking, n
~Q
g counts6 the

number of BPS multiplets arising from membranes wrapping the class ~Σ · ~Q ∈ H2(X,Z).

As shown in [11, 12] a one-loop diagram with membranes running in the loop precisely

generates the term (2.1) in the four dimensional effective action. By comparing the one-

loop diagram with (2.1) one finds that [11, 12]:

Zc(gs, t) = M(q)
χ(X)

2 · exp




∞∑

g=0

∞∑

n=1

1

n
[n]2g−2

∑

~Q

n
~Q
g e−n ~Q·~t



 . (2.4)

[n] ≡ qn/2 − q−n/2 is a q-number, where q ≡ e−gs and χ(X) is the Euler characteristic7 of

X. The function

M(q) =

∞∏

m=1

1

(1 − qm)m
(2.5)

is the MacMahon function, and arises from the contribution of D0-branes — or eleven

dimensional momentum — running in the loop. From the world-sheet point of view, this

is the contribution from constant maps from the world-sheet to X [11, 13].

Knowledge of the closed GV invariants n
~Q
g in X determines using (2.4) the closed

topological string partition function in X to all orders in perturbation theory.

5In writing this term we have already turned on a graviphoton field strength background F = gs, where

gs is the topological string coupling constant. R+ is the self-dual part of the curvature.
6g encodes the quantum number under SU(2)L, a subgroup of the rotation group in the four non-compact

directions.
7For a compact Calabi-Yau manifold, χ(X)/2 is the number of Kähler moduli minus the number of

complex structure moduli.
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Open GV invariants. The open string partition function Zo in X computes the super-

symmetric completion of the following term in the two dimensional effective action that

arises by wrapping P D4-branes on a special Lagrangian submanifold8 L ⊂ X

F (gs, t, V )R+, (2.6)

where:

F (gs, t, V ) =

∞∑

g=0

∞∑

h=1

Fg,h(t, V )g2g−2+h
s and Zo(gs, t, V ) = exp(F (gs, t, V )). (2.7)

Fg,h(gs, t, V ) is the topological string free energy on a genus g Riemann surface with h

boundaries, with the boundary conditions specified by a Lagrangian submanifold L, which

gives rise to BRST-invariant boundary conditions. V is the U(P ) holonomy matrix that

arises by integrating the gauge field on the D4-branes along the generator of H1(L,Z). It

corresponds to a complex scalar9 field in the effective two dimensional theory living on the

D4-branes.

It was shown in [1, 2] that these terms also arise at one-loop by integrating out BPS

states that end on the D4-branes. By comparing the one-loop computation with (2.6) one

arrives at the following expression [1, 2]:

Zo(gs, t, V ) = exp




∞∑

n=1

∑

~k

1

n

1

z~k

f~k(q
n, e−n ~Q·~t)Tr~kV

n



 . (2.8)

In the computation the symmetric group Sk plays a prominent role. ~k = (k1, k2, . . .) labels

a conjugacy class C(~k) of Sk since ~k corresponds to a partition of k:

k =
∑

j

jkj . (2.9)

The integers z~k
≡

∏
j kj !j

kj encode the number of permutations N(C(~k)) in the conjugacy

class C(~k), which is given by N(C(~k)) = k!/z~k
. Also:

Tr~kV ≡
∏

j

(TrV j)kj . (2.10)

The function f~k(q, e
− ~Q·~t) in (2.8) can be written in terms of the open GV invariants N̂Rg ~Q ∈

Z [1, 2]:

f~k
(qn, e−n ~Q·~t) =

∞∑

g=0

[n]2g−2
∞∏

j=1

[nj]kj
∑

~Q

∑

R

χR(C(~k))N̂Rg ~Qe−n ~Q·~t. (2.11)

As before [a] ≡ qa/2 − q−a/2, R is a representation of Sk and10 of U(P ) labeled by a Young

tableau R and χR(C(~k)) is the character in the representation R of Sk for the conjugacy

class C(~k). Roughly speaking, the integers N̂Rg ~Q count11 the number of BPS multiplets

8In order not to clutter the formulas and obscure the physics, we will assume that b1(L) = 1 in writing

the formulas. It is straightforward to write the corresponding formulas for b1(L) ≥ 1.
9We recall that the gauge group in topological string theory is complex.

10We recall that the representations of U(P ) and Sk are both labeled by a Young tableau.
11g encodes the quantum number under SO(2), the rotation group in the two non-compact directions.
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wrapping the class12 ~Σ · ~Q ∈ H2(X,L,Z) transforming in a representation R of U(P ) and

ending on the D4-branes wrapping L.

Knowledge of the open GV invariants N̂Rg ~Q and the holonomy matrix V corresponding

to a D-brane configuration in X determines using (2.8) the open topological string partition

function in X to all orders in perturbation theory.

3. Open strings in X = closed strings in Xb

We are now going to evaluate the open string partition function in a Calabi-Yau X (2.8)

and show that the resulting open+closed partition function in X takes precisely the form

of a closed string partition function (2.4) on a new Calabi-Yau manifold Xb! The physical

interpretation of Xb is as the Calabi-Yau space obtained by letting the D-branes in X

undergo a geometric transition. From the identification of partition functions we can

compute the closed GV invariants13 n
~Qb
g (Xb) in Xb in terms of the open N̂Rg ~Q(X) and

closed n
~Q
g (X) GV invariants in X.

The open+closed topological string partition function in X has a contribution from

the open string sector living on the D-brane configuration under study and one from the

closed string sector. Therefore, the partition function factorizes into two pieces

Zo+c(X) = Zo(gs, t, V ) · Zc(gs, t), (3.1)

the first arising from world-sheets with boundaries while the second one from world-

sheets without boundaries. n
~Q
g (X) determines Zc(gs, t) while N̂

Rg ~Q
(X) together with the

holonomy of the gauge field determines Zo(gs, t, V ). Since our goal is to show that the

open+closed partition function in X (3.1) takes the form of a closed string partition func-

tion Zc(Xb), the main task is to show that the open string contribution to (3.1) can be

rewritten as a closed string amplitude. Of course, the detailed form of the closed string

partition function in Xb will depend on the closed string partition function in X.

The open string partition function on such a D-brane configuration in X is completely

characterized by the corresponding open GV invariants in X and by specifying the holon-

omy of the gauge field A living on the D-brane configuration. Since the D-branes wrap a

Lagrangian submanifold L with b1(L) 6= 0, the D-brane amplitude depends on the gauge

invariant14 holonomy matrix

V = P exp

[
−

(∮

β
A +

∫

D
J

)]
, (3.2)

where J is the complexified Kähler form, β ∈ H1(L) and D is a two-chain with ∂D = β.

Geometrically, the holonomy of the gauge field (3.2) is gauge equivalent to the “position”15

12H2(X, L) denotes the relative homology group.
13We note that ~Qb ∈ Z

b2(Xb) while ~Q ∈ Z
b2(X). We shall see that if R is parametrized as in figure 1, then

H2(Xb,Z) ≃ H2(X,Z) ⊕ Z
2m.

14This is gauge invariance under closed string field theory gauge transformations, which act by J →

J + dΛ, A → A− Λ.
15The position is defined only up to Hamiltonian deformations, which are gauge symmetries of the A-

model open string field theory.
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R1

R2

RP−1

RP

Figure 2: A Young tableau R. Ri is the number of boxes in the i-th row. It satisfies Ri ≥ Ri+1.

of the branes in X. Therefore, the holonomy is part of the data that the open string theory

depends on.

Following [4], we turn on discrete values of the holonomy matrix (3.2) determined

by a Young tableau R. For a configuration of P D-branes the holonomy matrix can be

diagonalized

V ≡ UR = diag
(
e−a1 , e−a2 , . . . , e−aP

)
, (3.3)

where the eigenvalue ai corresponds to the “position” of the i-th brane, which is given

by [4]

ai ≡

∮

β
Ai +

∫

D
J = gs

(
Ri − i + P +

1

2

)
, i = 1, . . . , P. (3.4)

Ri is the number of boxes in the i-th row of the Young tableau R:

The explicit formula for the closed GV invariants in Xb depends on the closed GV

invariants in X, the open GV invariants of the D-brane configuration in X and on the

holonomy of the gauge field (3.3) on the branes, which is determined by a Young tableau

R. The most interesting contribution to the formula we derive for the closed GV invariants

in Xb arises from the open string partition function of the brane configuration in X, since

Zc(gs, t) in (3.1) already takes the form of a closed string partition function.

We start by performing our computations for the case when X is the resolved conifold

geometry. Apart from already capturing the closed string, bubbling Calabi-Yau interpreta-

tion of D-branes in a simple setting, it also has interesting applications to knot invariants.

We find that the closed topological string partition function on certain bubbling Calabi-Yau

manifolds are invariants of knots in S3.

We want to compute the open+closed topological string partition function on the re-

solved conifold geometry. In order to define the open string partition function we must

first specify a D-brane configuration in the resolved conifold giving rise to BRST-invariant

boundary conditions on the string world-sheet, corresponding to branes wrapping a La-

grangian submanifold. The resolved conifold is an asymptotically conical Calabi-Yau with

base S2 × S3 and topology R4 × S2. One can construct a Lagrangian submanifold L for

every knot α in the S3 at asymptotic infinity [14, 15]. We can then study the open string

– 8 –
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theory defined by D-branes wrapping these Lagrangian submanifolds, which have topology

L ≃ R2 × S1 and end on a knot α at asymptotic infinity.

We consider the open+closed string partition when P D-branes wrap a Lagrangian

submanifold L associated to an arbitrary knot α ⊂ S3. There are several contributions,

from both the open and closed string sector.

The closed string contribution is well known [11, 13]:

Zc(gs, t) = M(q) · exp

(

−
∞∑

n=1

1

n [n]2
e−nt

)

. (3.5)

Comparing with the general formula for the closed string partition function in terms of

the closed GV invariants (2.4) one finds that there is a unique non-vanishing closed GV

invariant in the resolved conifold geometry, given by n1
0 = −1. For the resolved conifold

geometry b2(X) = 1 — and χ(X) = 2 — and t =
∫
S2 J parametrizes the complexified size

of the S2.

The open string contribution to the partition function has several pieces. One con-

tribution is captured by the open string partition function in (2.8). The holonomy of the

gauge field (3.2) around the non-contractible one-cycle β in the Lagrangian L, — labeled

by the knot α16 — must be given to completely specify the D-brane configuration, and

the corresponding open string theory. This is because the holonomy of the gauge field

determines the positions of the D-branes up to Hamiltonian deformations17 [4], which are

gauge symmetries of the A-model open string field theory. Following [4] we now turn on a

non-trivial holonomy V = UR (3.2) labeled by a Young tableau R (3.3), (3.4). Turning on

a non-trivial holonomy has the effect of separating the branes, and therefore making the

off-diagonal open strings massive. Integrating these fields out also contributes to the open

string amplitude on the D-brane configuration. Combining the various terms we have that

the complete open string partition function is given by

Zo(gs, t, V = UR) = exp




∞∑

n=1

1

n



−
∑

1≤i<j≤P

e−n(ai−aj) +
∑

~k

1

z~k

f~k
(qn, e−nt)Tr~kU

n
R







(3.6)

where

exp



−
∞∑

n=1

1

n

∑

1≤i<j≤P

e−n(ai−aj)



 =
∏

1≤i<j≤P

(1 − e−(ai−aj)) (3.7)

arises by integrating out the off-diagonal massive open strings. From a world-sheet perspec-

tive this last contribution arises from world-sheet annuli connecting the various D-branes.18

16Note that the knot α ⊂ S3 is contractible in L.
17A Hamiltonian deformation is generated by a vector v in the normal bundle of L of the form vµ =

(w−1)µν∂νf for arbitrary f , where wµν is the Kähler form of the symplectic manifold X.
18Though (3.7) looks like a fermion determinant if we naively apply the argument of [1], the massive

open string is a boson. The argument does not really apply because the open string is not localized along

an S1. It instead applies to the related toric situation where an open string stretches between one brane

– 9 –
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By combining the closed string partition function (3.5) with the open string partition

function (3.6), we find that the open+closed partition function for a configuration of P

D-branes wrapping a Lagrangian submanifold L in the resolved conifold is given by:

Zo+c = M(q) exp




∞∑

n=1

1

n



−e−nt

[n]2
−

∑

1≤i<j≤P

e−n(ai−aj) +
∑

~k

1

z~k

f~k
(qn, e−nt)Tr~kU

n
R







 .(3.8)

The first step in identifying the open+closed string partition function in (3.8) as a

purely closed string amplitude is to write the contribution from the off-diagonal massive

open strings in (3.7) as a closed string world-sheet instanton expansion. For this purpose,

it is convenient to parametrize the Young tableau using the coordinates in figure 1. Then

the following useful identity can be derived (see appendix A)

ξ(q)P exp



−
∞∑

n=1

1

n

∑

1≤i<j≤P

e−n(ai−aj)





= M(q)m exp




∞∑

n=1

1

n [n]2




∑

1≤I≤J≤2m−1

(−1)J−I+1e−n(tI+tI+1+...+tJ )







 , (3.9)

where we have identified

tI = gslI I = 1, . . . , 2m (3.10)

with lI being the coordinates of the Young tableau in figure 1. M(q) is the MacMahon

function (2.5) and ξ(q) =
∏∞

j=1(1 − qj)−1. In this way we have written the contribution

from open string world-sheets with annulus topology as a closed string instanton expansion.

We can also derive the following formula for the holonomy of the gauge field on the

branes (see appendix A)

Tr~kU
n
R =

∞∏

j=1

(∑m
I=1 e−njT2I−1 − e−njT2I

[nj]

)kj

, (3.11)

with UR given in (3.3), (3.4). Here

TI =

2m∑

J=I

tJ (3.12)

and [nj] = qnj/2 − q−nj/2, where q = e−gs . Therefore, the contribution of the holonomy

matrix to the open string amplitude (3.6) also takes the form of a world-sheet instanton ex-

pansion with Kähler parameters tI , with I = 1, . . . , 2m. For later purposes it is convenient

to introduce the notation

e−nTo ≡ (e−nT1 , e−nT3 , . . . , e−nT2m−1), e−nTe ≡ (e−nT2 , e−nT4 , . . . , e−nT2m). (3.13)

D1 wrapping L1 and another D2 wrapping L2. Here L1 and L2 are two Lagrangians that can combine

and move off to infinity [16]. The open string is localized along L1 ∩ L2 = S1, and the argument of [1]

implies that it contributes the bosonic determinant 1/(1− e−∆a). If D1 and D2 both wrap L1 (or L2), the

contribution from the stretched open string is the inverse (1− e−∆a), which appears in (3.7). We thank M.

Aganagic for explaining this to us.
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A crucial step in uncovering the closed string interpretation of open string amplitudes

in topological string theory is to use the following identity (proven in appendix C using

CFT techniques, which are reviewed in appendix B)

∑

~k

1

z~k

χR1(C(~k))

∞∏

j=1

(
m∑

I=1

λI
j −

m∑

I=1

ηI
j

)kj

=
∑

R1,R2,R3

(−1)|R3|NR1
R2R3

sR2(λ)sRT
3
(η), (3.14)

where λ = (λI) and η = (ηI) with I = 1, . . . ,m are arbitrary variables. The left hand

side of (3.14) enters in the parametrization of the open string partition function in (2.8) by

using (2.11). The symbol NR1
R2R3

denotes the Littlewood-Richardson coefficients of U(P ),

which determine the number of times the representation R1 of U(P ) appears in the tensor

product of representations R2 and R3 of U(P ). RT
3 is the representation of U(P ) obtained

by transposing the Young tableau R3. Finally, sR(x) is a Schur polynomial of U(m), which

is labeled by a Young tableau R. It is defined by taking the trace19 in the representation

R

sR(x) ≡ TrRX, (3.15)

where X is an m × m diagonal matrix with entries X ≡ diag(x1, . . . , xm).

We can now use (3.11), (3.14)20 to write the second term in the open string partition

function on the resolved conifold (3.6) as follows:

∑

~k

1

z~k

f~k(q
n, e−nt)Tr~kU

n
R

=
∞∑

g=0

∑

Q∈Z

∑

R1,R2,R3

1

[n]2−2g
N̂R1gQ(−1)|R3|NR1

R2R3
sR2(e

−nTo)sRT
3
(e−nTe)e−nQt. (3.16)

We note that the factor [nj]kj in the definition of f~k
in (2.11) precisely cancels with an

identical factor in (3.14).

Therefore, we have proven that the open+closed partition function on the resolved

conifold (3.8) can be written as follows:21

Zo+c = M(q)m+1 exp

(
∞∑

g=0

∞∑

n=1

1

n [n]2−2g

[
− δg0e

−nt

+ δg0

∑

1≤I≤J≤2m−1

(−1)J−I+1e−n(tI+tI+1+...+tJ )

+
∑

Q∈Z

∑

R1,R2,R3

N̂R1gQ(−1)|R3|NR1
R2R3

sR2(e
−nTo)sRT

3
(e−nTe)e−nQt

])
. (3.17)

19In terms of the fundamental representation, we have that TrRX =
P

~k
1

z~k

χR(C(~k))
Q

j(TrXj)kj .
20For the resolved conifold there is only one Kähler modulus, which we denote by t.
21In writing this, we have dropped an ambiguous factor proportional to ξ(q), which does not affect the

answer to any order in perturbation theory [17].

– 11 –



J
H
E
P
0
7
(
2
0
0
7
)
0
0
5

A quick glance at the formula for the closed topological string partition function in

terms of closed GV invariants (2.4) confirms that the open+closed partition function in

the resolved conifold (3.17) takes precisely the form of a closed string partition function

on a different Calabi-Yau space Xb. Moreover, by using that the Littlewood-Richardson

coefficients NR1
R2R3

are integers and that a Schur polynomial sR(M) is a symmetric polyno-

mial of the eigenvalues of M with integer coefficients, we can conclude that the coefficients

in (3.17) have the correct integrality properties for a closed string amplitude parametrized

by closed GV invariants. Therefore, we have proven that the open+closed string parti-

tion function on the resolved conifold takes precisely the form of a closed string partition

function in another Calabi-Yau Xb with the correct integrality properties!

It follows from the expression in (3.17) that the Calabi-Yau manifold Xb has different

topology than the Calabi-Yau space we started with. In fact, by looking at the exponent

of M(q) in (3.17) we have shown that χ(Xb) = 2m+2. The appearance of the extra cycles

has a simple physical intepretation. The branes in the resolved conifold have undergone

a geometric transition and have been replaced by flux. Fluxes in the topological string

correspond precisely to non-trivial periods of the complexified Kähler form J . In this

picture, the original branes disappear and leave behind a collection of non-contractible

cycles on which their flux is supported. It is this picture that warrants the description of

Xb as a bubbling Calabi-Yau.

It is now straightforward to extend the computation of the open+closed partition

function to an arbitrary Calabi-Yau X. The open+closed partition function of a D-brane

configuration in X is given by:

Zo+c = M(q)
χ(X)+2m

2 exp

(
∞∑

g=0

∞∑

n=1

1

n [n]2−2g

[
∑

~Q

n
~Q
g e−n ~Q·~t

+ δg0

∑

1≤I≤J≤2m−1

(−1)J−I+1e−n(tI+tI+1+...+tJ )

+
∑

~Q

∑

R1,R2,R3

N̂
R1g ~Q

(−1)|R3|NR1
R2R3

sR2(e
−nTo)sRT

3
(e−nTe)e−n ~Q·~t

])
. (3.18)

The integers n
~Q
g are the closed GV invariants in X, which determine the closed string

partition function in X, where now ~Q ∈ Zb2(X). As before, the integers N̂R′g ~Q are the open

GV invariants of the D-brane configuration in X. Just as in the case when X is the resolved

conifold, the open+closed partition function (3.18) takes precisely the form of a closed string

partition function in Xb (2.4), with integral closed GV invariants. This explicitly shows

that the physics of D-branes in X can be either described by open+closed string theory in

X or equivalently by closed string theory on a topologically different manifold Xb. Showing

that the open+closed string theory in X has a closed string interpretation in Xb does not

rely on explicitly knowing the open and closed GV invariants in X. Nevertheless, since

the open and closed partition function take a very particular form in topological string

theory — being parametrized by integer invariants –, we can show that we the open string

amplitude in X takes the form of a closed string amplitude in Xb.

– 12 –



J
H
E
P
0
7
(
2
0
0
7
)
0
0
5

We can explicitly compute the closed GV invariants n
~Qb
g (Xb) in Xb in terms of the open

N̂Rg ~Q and closed n
~Q
g GV invariants in X by comparing the open+closed string partition

function in X (3.18) with the general expression for the closed string partition function in

topological string theory (2.4). By matching the two series we get:

∑

~Qb

n
~Qb
g (Xb)e

− ~Qb·~t =
∑

~Q

n
~Q
g e−

~Q·~t + δg0

∑

1≤I≤J≤2m−1

(−1)J−I+1e−tI−tI+1−...−tJ

+
∑

~Q

∑

R1R2R3

N̂
R1g ~Q

e−
~Q·~t(−1)|R3|NR1

R2R3
sR2(e

−To)sRT
3
(e−Te). (3.19)

By comparing the two series one can explicitly calculate n
~Qb
g (Xb) in terms of N̂R1g ~Q and

n
~Q
g . In appendix D, we rewrite (3.19) in a form in which it is easy to obtain the closed GV

invariants in Xb from the open and closed GV invariants in X.

Continuous v.s. discrete holonomies and framing dependence. Holonomy taking

discrete values plays a crucial role in the discussion in [4] and this paper. On the other

hand, most topological string literature starting with [1] has assumed that holonomy takes

continuous values. It is natural to ask what is the relation between the two pictures.

Our proposal is that the partition function in one picture with one framing is a linear

combination of partition functions in the other picture with an appropriate framing. We

now explain this statement in some detail. Let us assume that the Lagrangian submanifold

L the D-branes wrap has topology of R2 × S1, which can be regarded as solid torus. At

asymptotic infinity, the geometry is a cone over T 2. Given L, there is a unique one-cycle

of T 2 that is contractible in L. In fact, as one moves from one point to another one in the

quantum moduli space of such D-branes, the original contractible cycle can become non-

contractible while another cycle becomes contractible. In other words, the quantum moduli

space contains topologically distinct Lagrangian submanifolds that are related by a flop.

The open string partition function Zo(gs, V ; f1) is a wave function in Chern-Simons theory

on the T 2 at infinity. The definition of the wave function involves framing(=the choice of

polarization) f1, i.e., the choice of variables corresponding to a coordinate and its conjugate

momentum. In the case of Chern-Simons theory on T 2, polarization is fixed by choosing

a pair of symplectic generators (α, β) such that #(α ∩ β) = 1.
∮
α A plays the role of a

coordinate and
∮
β A the role of the conjugate momentum. gs plays the role of the Planck

constant [18]. The conventional picture of holonomy is such that V ∼ exp−
∮
α A, where α

is a non-contractible cycle. Since
∮
α A is a periodic variable, the conjugate momentum

∮
β A

gets quantized in units of gs. A basis state |R〉 of the Hilbert space in our polarization

is labeled by a Young tableau R, and this state corresponds to exp−
∮
β A = UR [18].

On the other hand, the state in which exp−
∮
α A equals V is |V 〉 =

∑
R TrRV |R〉. We

expect that there is a point in the moduli space where α is a non-contractible cycle of L.

We also expect that the two open string partition functions are related as Zo(gs, V ; f1) =∑
R TrRV Zo(gs, UR; f2) with appropriate framing f2. This is indeed what happens for the

D-branes corresponding to unknot in S3 up to normalization and a shift in the Kähler

modulus [8].
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Knot invariants from closed strings in bubbling Calabi-Yau manifolds. In [4]

we identified the D-brane configurations22 in the resolved conifold X corresponding to a

Wilson loop in U(N) Chern-Simons theory on S3. The brane configuration depends on the

knot α ⊂ S3 and on the choice of a representation R of U(N), which is the data on which

the Wilson loop depends on (see [4] for the details of the brane configuration).

This identification was explicitly verified for the case when α is the unknot and for an

arbitrary representation R. In addition, we noticed that the D-brane configuration23 in the

resolved conifold corresponding to the unknot and for arbitrary representation R, shown

in figure 3(a), could be given a purely closed string interpretation in terms of the closed

string partition function on a bubbling Calabi-Yau Xb of ladder type, shown in figure 3(b).

More concretely, we showed that [4]
〈

TrRP exp−

∮

α
A

〉
= Zo+c(X) = Zc(Xb), (3.20)

where

Zo+c(X) = M(q) exp

(
∞∑

n=1

1

n

[
−

e−nt

[n]2
−

∑

i<j

e−n(ai−aj) +
P∑

i=1

e−nai − e−n(t+ai)

[n]

])
(3.21)

is the open+closed string partition function in the resolved conifold X, and

Zc(X) = M(q)m+1 exp

∞∑

n=1

1

n[n]2



−
∑

1≤I≤2m+1

e−ntI +
∑

1≤I≤2m

e−n(tI+tI+1)

−
∑

1≤I≤2m−1

e−n(tI+tI+1+tI+2) . . . − e−n(t1+...+t2m+1)



 (3.22)

is the closed string partition function in Xb with t2m+1 ≡ t. The equality Zo+c(X) = Zc(Xb)

is of course the special case of the result in the present paper. By comparing (3.21)

with (3.17), we see that N̂ ,g=0,Q=0 = 1 and N̂ ,g=0,Q=1 = −1 are the only non-zero open

GV invariants. It can be seen that (3.22) agrees with (3.17). One consequence of this

identification is that closed topological string theory on bubbling Calabi-Yau manifolds Xb

yield knot invariants for the unknot.

In this paper we have shown that any brane configuration in a Calabi-Yau manifold —

so in particular in the resolved conifold — has a purely closed string interpretation. Since

we know [4] which brane configuration corresponds to a Wilson loop for arbitrary knot

α and representation R, we can associate to the bubbling Calabi-Yau obtained from this

brane configuration a knot. This set of connections uncovers an interesting relation between

closed GV invariants in bubbling Calabi-Yau manifolds Xb and invariants of knots in S3.

It implies that the closed string partition function on appropriate bubbling Calabi-Yau

manifolds Xb are invariants of knots on S3.

22The convention for the distinction of brane/anti-brane here is the opposite of [4].
23As explained in [4], a given Wilson loop can be represented either in terms of D-branes or anti-branes

in the resolved conifold, in an analogous fashion to the AdS description of half-BPS Wilson loops [19]. Both

brane configurations give rise to the same bubbling Calabi-Yau Xb.
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(a) (b)

Figure 3: (a) The resolved conifold and D-branes with holonomy UR inserted on an outer edge.

(b) The bubbling Calabi-Yau Xb after geometric transition of the D-branes. The Kähler moduli

are given by tI = gslI , I = 1, . . . , 2m, where lI are defined in figure 1.

4. Geometric transitions in toric Calabi-Yau’s

In this section we study the geometric transitions giving rise to bubbling Calabi-Yau man-

ifolds in the set-up of toric Calabi-Yau manifolds. In addition to the general picture of

geometric transitions presented in the previous section, here we are able to concretely

identify both the D-brane configurations and the bubbling Calabi-Yau manifolds. We ex-

plain how these geometric transitions can be understood by a combination of complex

structure deformation and a local version of conifold transition. Furthermore we explicitly

show, by using the topological vertex techniques, that the open string partition function

in a given D-brane configuration is precisely the closed string partition function in the

corresponding bubbling Calabi-Yau.

4.1 Local Gopakumar-Vafa duality

Take an arbitrary toric Calabi-Yau manifold specified by a toric diagram. Let us focus on

one of the edges. Without losing generality we assume that it is an internal edge.24 Consider

m non-compact branes wrapping a Lagrangian submanifold as shown in figure 4(a). The

submanifold has the topology of R2 × S1, and preserves an U(1)2 ⊂ U(1)3 symmetry. As

explained in [20], it is possible to modify the geometry so that the new geometry has a

compact 3-cycle of S3 topology in the edge.25 Near the S3 the local geometry is that of

the deformed conifold. The new geometry is not toric, but has the structure of an R × T 2

fibration [21]. By a complex structure deformation that makes the S3 infinitely large,

one recovers the original toric Calabi-Yau. The A-model amplitude is invariant under the

complex structure deformation.

The m branes now wrap the S3 as shown in figure 4(b). In the limit of infinite S3 size

we get m non-compact D-branes ending on the edge in the original geometry, see figure 4(a).

In the original geometry, the non-compact Lagrangian submanifold has topology of R2×S1,

which we regard as a solid torus. In particular it has a non-contractible S1 cycle. The

non-compact Lagrangian is compactified to S3 in the modified geometry. If we focus on the

24By making the internal edge infinitely long one can trivially make it external.
25In fact there is an infinite family of such modifications labeled by an integer p. p specifies framing of

the non-compact branes as well as the orientation of the new line in 4(b).
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S3

(a) (b) (c) (d)

Figure 4: (a) Non-compact D-branes (dashed lines ending on edges) in a toric Calabi-Yau manifold.

The framing of the branes is specified by a vector f . (b) The geometry can be modified without

changing the amplitude while making the brane world-volume a compact S3. (c) The compact

branes get replaced by a new 2-cycle upon geometric transition. (d) Geometric transition of anti-

branes produces a flopped geometry.

Lagrangian alone, compactification is achieved by gluing another copy of the solid torus

to the first copy after applying the S ∈ SL(2,Z) transformation on the T 2 boundary. The

non-contractible S1 becomes contractible in the new copy. The Chern-Simons path integral

on the new copy of the solid torus prepares a state on T 2, which is the ground state because

we insert no Wilson loop. After the S transformation, the ground state induces certain

holonomy along the S1 proportional to the Weyl vector of U(m) [18]:

−

∮
A = diag

(
gs

[
−i +

1

2
+

m

2

])m

i=1

. (4.1)

We now apply the local Gopakumar-Vafa duality [22] to the branes wrapping the S3.

The m branes disappear and get replaced by a 2-cycle of topology S2 with complexified

Kähler modulus gsm. The local geometry is that of the resolved conifold with Kähler

parameter gsm. See figure (c). This makes clear that we need discrete values of holonomy

on the branes to have geometric transition.26

If replace the branes by anti-branes we obtain a flopped geometry (figure 4(d)).

4.2 Geometric transition of branes in toric Calabi-Yau’s

We now verify our proposal for the geometric transition described above. This is done by

showing, using the topological vertex formalism [20], that non-compact branes and anti-

branes with certain discrete values of holonomy can be replaced by geometries. As in much

of recent literature we redefine q → q−1 relative to [20].27 Basic facts about the topological

vertex are summarized in appendix E.

Let us consider an arbitrary toric Calabi-Yau manifold that contains an interior edge

as shown in figure 5(a). Without D-branes the part of the partition function corresponding

to this edge would be:
∑

R

CR1R2R(−1)(n+1)|R|q
1
2
nκRe−|R|tCRT R3R4

. (4.2)

26Branes with continuous values of the holonomy on an edge are a superposition (integral transform) of

branes with discrete values of the holonomy ending on another edge [4]. The integral transform accounts

for the change of polarization of Chern-Simons theory on T 2.
27This is to ensure that infinite power series that appears in amplitudes involve positive powers of q.

Such convention is more natural in relation to the quantum foam picture [23, 24].
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R
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v

v1

v2

v3

v4

f

f

(a) (b)

Figure 5: (a) An internal edge of length t in a toric web diagram. v, v1, . . . , v4 are the vectors

whose components are two coprime integers, and they specify the orientations of the associated

edges. They satisfy the conditions v1 ∧ v = v2 ∧ v1 = v ∧ v2 = 1 = v3 ∧ v = v4 ∧ v3 = v ∧ v4,

v + v1 + v2 = 0 = v + v3 + v4. n := v1 ∧ v3 is the relative framing of the two vertices. We insert

m non-compact branes at the positions specified in the figure. f is another vector that specifies

the framing of the branes, and satisfies the condition f ∧ v = 1. The integer p := f ∧ v1 enters

the gluing rule of vertices. (b) After the geometric transition the branes get replaced by a new S2

represented by the edge of length gsm. The orientation of the new external edges is precisely given

by the framing vector of the branes.

t is the length of the edge, and n is the relative framing of the two vertices. CR1R2R3 is

the basic object underlying the topological vertex [20]. κR = |R|+
∑

i R
2
i − 2iRi, where Ri

is the number of boxes on the i-th row and |R| is the total number of boxes in the Young

tableau R. See appendix F for the explicit expression for CR1R2R3 .

If we insert D-branes28 with holonomy matrix V in the internal edge, (4.2) is replaced

by:

∑

R,QL,QR

CR1,R2,R⊗QL
(−1)sq−F e−LCRT ⊗QR,R3,R4

TrQL
V TrQR

V −1. (4.3)

If the framing of the branes relative to the left vertex is p then:29

s = |R| + p(|R| + |QL|) + (n + p)(|R| + |QR|), (4.4)

F =
1

2
pκR⊗QL

+
1

2
(n + p)κRT ⊗QR

, L = |R|t + |QL|a + |QR|(t − a). (4.5)

Alternatively we can write (4.3) as:

∑

R5,R6

CR1R2R5 × (−1)p|R5|q−
1
2
pκR5e−|R5|a

(
∑

R

TrR5/RV (−1)|R|TrR6/RT V −1

)

×(−1)(n+p)|R6|q−
1
2
(n+p)κR6e−|R6|(t−a)CR6R3R4. (4.6)

28In the present convention, a brane here is an anti-brane in [4] and vice versa. This can be confirmed

by computing a brane amplitude in the resolved conifold.
29Here a =

R

D
J is the complexified area of a holomorphic disk, and e−aV is the gauge invariant open

string modulus.
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Here TrR/R′(V ) :=
∑

R′′ NR
R′R′′TrR′′V with NR

R′R′′ being tensor product coefficients.

In appendix F we show that by substituting30

V = Um := diag(qm−i+1/2)mi=1, (4.7)

that the expression in the brackets in (4.6), multiplied by31 ξ(q)m
∏

1≤i<j≤m(1 − qj−i), is

related to the topological vertex:

ξ(q)m
∏

1≤i<j≤m

(1 − qj−i)
∑

R

TrR5/RUm(−1)|R|TrR6/RT U−1
m

= M(q)q−m|R6|q−
1
2
κR5

− 1
2
κR6

∑

R

C·RT
5 R(−1)|R|e−|R|gsmCRT ·RT

6
(4.8)

The expression (4.6) then becomes

M(q)
∑

R,R5,R6

CR1R2R5(−1)p|R5|q−
1
2
(p+1)κR5e−|R5|aC·RT

5 R(−1)|R|e−|R|gsm

×CRT ·RT
6
(−1)(n+p+1)|R6|q−

1
2
(n+p)κR6e−|R6|(t−a−gsm)CR6R3R4 . (4.9)

This is precisely the contribution from a part of the new geometry shown in figure 5(b),

where the branes are replaced by a new S2! The orientations of the new edges are deter-

mined by the framing p of the branes.32

Anti-branes. We now demonstrate the geometric transition for anti-branes. Replac-

ing branes by anti-branes is equivalent to the replacement TrRV → (−1)|R|TrRT V [20].

Since NR1
R2R3

= N
RT

1

RT
2 RT

3
,33 this is equivalent to replacing the bracket in (4.6) by

(−1)|R5|+|R6|
∑

R TrRT
5 /RV (−1)|R|TrRT

6 /RT V −1. Thus when anti-branes with holonomy V

are inserted, the contribution from the part of geometry in figure 5(a) is:

∑

R5,R6

CR1R2R5 × (−1)(p+1)|R5|q−
1
2
pκR5e−|R5|a

(
∑

R

TrRT
5 /RV (−1)|R|TrRT

6 /RT V −1

)

×(−1)(n+p+1)|R6|q−
1
2
(n+p)κR6e−|R6|(t−a)CR6R3R4 . (4.10)

Using the property that CR1R2R3 = q−
1
2
κR1

− 1
2
κR2

− 1
2
κR3CRT

3 RT
2 RT

1
[20] we obtain

from (4.8) the relation:

ξ(q)m
∏

1≤i<j≤m

(1 − qj−i)(−1)|R5|+|R6|
∑

R

TrRT
5 /RUm(−1)|R|TrRT

6 /RT U−1
m

= M(q)q−m|R6|
∑

R

CRT
5 ·RT (−1)|R|e−|R|gsmC·RRT

6
. (4.11)

30The exponent of Um differs from (4.1) by an i-independent shift that was absorbed in a.
31As we saw in section 3, it is natural to include these factors when considering branes with discrete

values of the holonomy. The product arises from annuli connecting the branes.
32The equality of certain open and closed string amplitudes observed in section 3 of [25] is an example

of the geometric transition discussed here. We thank M. Marinõ for pointing this out.
33This relation holds for U(N) in the limit N → ∞, and can be proven, for example, by using (B.8)

and (B.11).
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R

R1

R2

R3

R4

R5

R6

a

gsm

t − a − gsm

v

v

v1

v2 v3

v4

f

f

Figure 6: The geometry that is obtained from figure 5(a) through geometric transition of anti-

branes. It is related to figure 5(b) by flop.

When combined with formula (4.11), the amplitude (4.10) represents the contribution

from the part of the toric geometry shown in figure 6. This is related to the geometry

in figure 5(b) by a flop. Again the orientations of the new edges are determined by the

framing vector f of the anti-branes.
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A. From open strings to closed strings

In this appendix we give a derivation of formula (3.9):

ξ(q)P exp



−
∞∑

n=1

1

n

∑

1≤i<j≤P

e−n(ai−aj)





= M(q)m exp



 1

n [n]2




∑

1≤I≤J≤2m−1

(−1)J−I+1e−n(tI+tI+1+...+tJ )







 . (A.1)

Using the value of the holonomies

ai = gs

(
Ri − i + P +

1

2

)
, i = 1, . . . , P (A.2)
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the exponent on the left hand side of (A.1) can be written as

S ≡
∞∑

n=1

1

n

∑

1≤i<j≤P

e−ngs(Ri−Rj)e−ngs(j−i). (A.3)

We now perform the sum by using the parametrization of the Young tableau in figure 1.

There are two classes of contributions. The first class arises when (i, j) belong to the same

“block” in the Young tableau, so that Ri = Rj, while the second class arises when (i, j)

are in different “blocks” and Ri 6= Rj . The contribution from rows in the same “block” is

given by

S1 =
∞∑

n=1

1

n

m∑

I=1

∑

αI≤i<j≤βI

e−ngs(j−i), (A.4)

while the contribution from rows in different “blocks” is

S2 =
∞∑

n=1

1

n

∑

1≤I<J≤m

e−ngs
PJ−1

a=I l2a

βI∑

i=αI

engsi
βJ∑

j=αJ

e−ngsj, (A.5)

where

αI =
I∑

a=1

l2a−3 + 1 and βI =
I∑

a=1

l2a−1, (A.6)

and li i = 1, . . . 2m+1 are the coordinates of the Young tableau in figure 1. In writing (A.5)

we have used that the number of boxes in the I-th “block” is given by:

Ri =
m∑

a=I

l2a i ∈ I -th “block”. (A.7)

The sum in (A.4) can be performed by grouping terms with the same value of j − i

and multiplying by the degeneracy; this yields:

∞∑

n=1

1

n

m∑

I=1

βI−αI∑

k=1

(βI − αI + 1 − k)e−ngsk. (A.8)

Using the formula

c−1∑

k=1

(c − k)qnk = −
1

[n]2
[1 − c(qn − 1) − qnc] (A.9)

we get that

S1 = −m

∞∑

n=1

1

n [n]2
+ P

∞∑

n=1

1

n [n]
qn/2 +

m∑

I=1

∞∑

n=1

1

n [n]2
e−nt2I−1 , (A.10)

where P =
∑m

I=1 l2I−1 is the number of rows in the Young tableau and tI = gslI .
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The contribution from rows in different blocks can be straightforwardly computed using

b∑

i=1+a

xi =
x

1 − x
(xa − xb). (A.11)

It is given by:

S2 =
∞∑

n=1

1

n [n]2

∑

1≤I<J≤m

[
e−n

P2J−2
a=2I ta+ e−n

P2J−1
a=2I−1 ta− e−n

P2J−2
a=2I−1 ta− e−n

P2J−1
a=2I ta

]
.(A.12)

Therefore, combining (A.10) and (A.12) we get that

ξ(q)P exp



−
∞∑

n=1

1

n

∑

1≤i<j≤P

e−n(ai−aj)



 = M(q)m exp

(
∞∑

n=1

−
1

n [n]2

[
m∑

I=1

e−nt2I−1

+
∑

1≤I<J≤m

[
e−n

P2J−2
a=2I ta + e−n

P2J−1
a=2I−1 ta − e−n

P2J−2
a=2I−1 ta − e−n

P2J−1
a=2I ta

] ])

, (A.13)

where

M(q) ≡ exp

(
∞∑

n=1

1

n [n]2

)
=

∞∏

n=1

1

(1 − qn)n
,

ξ(q) ≡ exp

(
∞∑

n=1

1

n [n]2
qn/2

)

=

∞∏

j=1

(1 − qj)−1. (A.14)

The desired formula (A.1) then follows by combining the terms in (A.13).

Likewise, formula (3.11)

Tr~kU
n
R =

∞∏

j=1

(∑m
I=1 e−njT2I−1 − e−njT2I

[nj]

)kj

(A.15)

can be also be derived by splitting the sum over rows into blocks

Tr~kU
n
R =

∞∏

j=1

(
P∑

i=1

e−njgs(Ri−i+P+1/2)

)kj

=
∞∏

j=1




m∑

I=1

e−njgs(
Pm

a=I l2a+
Pm

J=1 l2J−1)e−njgs/2
βI∑

i=αI

enjgsi




kj

, (A.16)

where we have used that P =
∑m

J=1 l2J−1. Now we can perform the sums to arrive at the

right hand side of (A.15) by using that TI =
∑2m

i=I gsli.

B. Operator formalism

In order to derive some of the group theory identities in the paper it is very convenient

to exploit the relation between the representation theory of U(N) and two dimensional

bosons and fermions in two dimensions.
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Let us consider the mode expansion of a chiral boson φ(z) and fermions ψ(z), ψ(z) in

two dimensions, which are related by bosonization/fermionization:

φ(z) = i
∑

n 6=0

αn

nzn
, (B.1)

ψ(z) =
∑

r∈Z+ 1
2

ψr

zr+1/2
, ψ(z) =

∑

r∈Z+ 1
2

ψr

zr+1/2
, (B.2)

i∂φ =: ψψ :, ψ =: eiφ :, ψ =: e−iφ : . (B.3)

The oscillator modes satisfy the familiar commutation relations:

[αn, αm] = nδn+m,0, {ψr, ψs} = δr+s,0. (B.4)

We can also define a charge conjugation operator C. Charge conjugation C exchanges ψ

and ψ:

Cψ(z)C = ψ(z), C2 = 1, C|0〉 = |0〉. (B.5)

Then C acts on i∂φ(z) =: ψ(z)ψ(z) : as:

C∂φ(z)C = −∂φ(z). (B.6)

The connection between Young tableau R and fermions arises from the identification

|R〉 =

d∏

i=1

ψ−ai−1/2ψ−bi−1/2|0〉, (B.7)

where ai ≡ Ri − i, bi = RT
i − i are the Frobenius coodinates of R and d is the number of

boxes in the diagonal of the Young tableau R.

It follows that:

C|R〉 = (−1)|R||RT 〉. (B.8)

Let us now define [23] the operator

Γ±(z) := exp

∞∑

n=1

z±n

n
α±n, (B.9)

which satisfies

Γ+(z+)Γ−(z−) =
1

1 − z+/z−
Γ−(z−)Γ+(z+), Γ+(z)|0〉 = |0〉, 〈0|Γ−(z) = 〈0|. (B.10)

The skew Schur functions can be conveniently expressed as

sR/Q(x) = 〈R|
∏

i

Γ−(x−1
i )|Q〉 = 〈Q|

∏

i

Γ+(xi)|R〉. (B.11)
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The familiar Schur polynomials sR(x) arise when |Q〉 = |0〉. In terms of these the skew

Schur polynomials are given by

sR/Q(x) =
∑

R′

NR
QR′sR′(x), (B.12)

where NR
QR′ are the Littlewood-Richardson coefficients.

The following formula will come in handy in appendix F

esL0Γ±(z)e−sL0 = Γ±(e−sz), (B.13)

where

L0 =

∞∑

n=1

α−nαn. (B.14)

C. An identity for integrality

Let us prove the equation (3.14).

∑

~k

1

z~k

χR1(C(~k))

∞∏

j=1

(
m∑

I=1

λI
j −

m∑

I=1

ηI
j

)kj

=
∑

R1,R2,R3

(−1)|R3|NR1
R2R3

sR2(λ)sRT
3
(η), (C.1)

This is a generalization of (7.29) in [21]. It was used there for a similar purpose, and was

originally derived in [2].

Proof. Consider oscillators αn for a chiral boson as in (B.3). Let us consider the state

|λ, η〉 ≡
∑

~k

1

z~k

∞∏

j=1

(
m∑

I=1

λI
j −

m∑

i=I

ηI
j

)kj ∞∏

j=1

α
kj

−j |0〉

= exp

(
∞∑

n=1

1

n

(
m∑

I=1

λI
n −

m∑

I=1

ηI
n

)
α−n

)
|0〉

=
m∏

I=1

Γ−(λ−1
I )

m∏

I=1

Γ−1
− (η−1

I )|0〉. (C.2)

The left hand side of (C.1) is 〈R1|λ, η〉, where 〈R1| is the fermionic Fock state associated

with R1 in (B.7).

It can also be evaluated as follows:

〈R1|λ, η〉 =
∑

R2

〈R1|
∏

I

Γ−(λ−1
I )|R2〉〈R2|

∏

I

Γ−1
− (η−1

I )|0〉

=
∑

R2

〈R1|
∏

I

Γ−(λ−1
I )|R2〉(−1)|R2|〈RT

2 |C
∏

I

Γ−1
− (η−1

I )|0〉

=
∑

R2

(−1)|R2|sR1/R2
(λ)sRT

2
(η)

=
∑

R2,R3

(−1)|R2|NR1
R2R3

sR3(λ)sRT
2
(η). (C.3)

where we have used (B.11). This proves (C.1) after relabeling R2 and R3.
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D. From closed strings to open strings

On the right hand side of (3.19), let us focus on:
∑

R1R2R3

N̂R1g ~Q(−1)|R3|NR1
R2R3

sR2(e
−To)sRT

3
(e−Te). (D.1)

In the operator formalism, we can write this as:
∑

R1

N̂R1g ~Q〈R1|
∏

i

Γ−(eTo,i)
∏

i

Γ−(eTe,i)−1|0〉. (D.2)

If we define

|~k〉 =
∞∏

j=1

α
kj

−j|0〉, N~kg ~Q
:=

∑

R1

χR1(C(~k))N̂
R1g ~Q

, (D.3)

then

|R〉 =
∑

~k

1

z~k

χR(C(~k))|~k〉. (D.4)

Thus (D.1) equals

∑

~k

1

z~k

N̂~kg ~Q
〈~k|

∏

i

Γ−(eTo,i)
∏

i

Γ−(eTe,i)−1|0〉. (D.5)

Notice that

∏

i

Γ−(x−1
i )± = exp±

∞∑

j=1

1

j

∑

i

xj
iα−j

=
∑

~k

(±1)
P

j kj

z~k

P~k
(x)

∞∏

j=1

α
kj

−j . (D.6)

Here P~k
(x) =

∏
j(

∑
i x

j
i )

kj . (D.1) becomes

∑

~k

1

z~k

N̂~kg ~Q
〈~k|

∑

~k1,~k2

(−1)
P

j k2,j

z~k1
z~k2

P~k1
(e−To)P~k2

(e−Te)|~k1 + ~k2〉

=
∑

~k1,~k2

N̂~k1+~k2,g, ~Q

(−1)
P

j k2,j

z~k1
z~k2

P~k1
(e−To)P~k2

(e−Te). (D.7)

It is clear that the contributions from (D.1) to
∑

~Qb

n
~Qb
g (Xb)e

− ~Qb·~t (D.8)

have to be symmetric with respect to e−To,i , and also with respect to e−Te,i . Any such

function can be expanded in P~k1
(e−To)P~k2

(e−Te), and once we know the coefficients, we

can read off N̂~kg ~Q
using (D.7). Finally one computes the open GV invariants using the

formula N̂Rg ~Q =
∑

~k
N̂~kg ~Q

χR(C(~k))/z~k
.
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E. Topological vertex amplitude

We use the convention such that q is replaced by q−1 relative to [20]. Explicitly it is given,

with slight abuse of notation, by:

CR1R2R3(q)=q−
1
2
(κR2

+κR3
)sRT

2
(qi−1/2)

∑

Q

sR1/Q(q−(RT
2 )i+i−1/2)sRT

3 /Q(q−(R2)i+i−1/2). (E.1)

Here sR1/R2
is a skew Schur function. The index i runs from 1 to ∞.

The partition function of topological strings on any toric Calabi-Yau manifold, with

or without D-branes, can be computed by gluing several topological vertices. The gluing

rules are explained in subsection 4.2.

F. An identity for geometric transitions

In this appendix we prove the identity (4.8).

First we compute
∑

R

TrR5/RUm×l(−1)|R|TrR6/RT U−1
m×l

=
∑

R

〈R5|
m∏

i=1

Γ−(q−l−m+i−1/2)|R〉(−1)|R|〈RT |
m∏

i=1

Γ+(q−l−m+i−1/2)|R6〉

=
∑

R

〈R5|
m∏

i=1

Γ−(q−l−m+i−1/2)|R〉〈R|C
m∏

i=1

Γ+(q−l−m+i−1/2)|R6〉

= (−1)|R6|〈R5|
m∏

i=1

Γ−(q−l−m+i−1/2)

m∏

i=1

Γ−1
+ (q−l−m+i−1/2)|RT

6 〉

= (−1)|R6|〈R5|
∞∏

i=1

Γ−(q−l−i+1/2)

∞∏

i=1

Γ−1
− (q−l−m−i+1/2)

×
∞∏

i=1

Γ−1
+ (q−l−m+i−1/2)

∞∏

i=1

Γ+(q−l+i−1/2)|RT
6 〉

= (−1)|R6|
∞∏

i,j=1

(1 − qm+i+j−1)−1〈R5|
∞∏

i=1

Γ−(q−l−i+1/2)
∞∏

i=1

Γ+(q−l+i−1/2)

×
∞∏

i=1

Γ−1
− (q−l−m−i+1/2)

∞∏

i=1

Γ−1
+ (q−l−m+i−1/2)|RT

6 〉

= (−1)|R6|e
P

∞

n=1
e−ngsm

n[n]2
∑

R,Q,Q′

〈R5|
∞∏

i=1

Γ−(q−l−i+1/2)|Q〉〈Q|
∞∏

i=1

Γ+(q−l+i−1/2)|R〉

×(−1)|R|〈RT |
∞∏

i=1

Γ−(q−l−m−i+1/2)|Q′〉〈Q′|
∞∏

i=1

Γ+(q−l−m+i−1/2)|R6〉(−1)|R6|

= e
P

∞

n=1
e−ngsm

n[n]2
∑

R,Q,Q′

(−1)|R|ql(|R5|−|R|)sR5/Q(qi−1/2)sR/Q(qi−1/2)

×q(l+m)(|R|−|R6|)sRT /Q′(qi−1/2)sR6/Q′(qi−1/2)

= ql|R5|−(l+m)|R6|−
1
2
κR5

− 1
2
κR6e

P

∞

n=1
e−ngsm

n[n]2
∑

R

C·RT
5 R(−1)|R|e−|R|gsmCRT ·RT

6
. (F.1)
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Combining this with (3.9) when Ri = 0 gives (4.8).
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